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Introduction

It is common knowledge that one of the core concepts of statistics is linear regression. Not only is it
the highlight of Macalester’s own Introduction to Statistics (STAT 155) course, but it has a vast range of
applications to real life ranging from modeling fuel costs based on miles driven and car type to predicting
ice cream sales based on temperature. But what are the underlying assumptions of this ever important
modeling technique, and what happens if these assumptions do not hold? In this analysis, we take a closer
look at one of the key assumptions of ordinary least squares, which is exogeneity, and the consequences of
omitted variable bias if this assumption does not hold.

Background

Before covering omitted variable bias, we will introduce ordinary least squares and its assumptions. Ordinary
least squares estimation, or OLS, estimates the parameters in a regression model by minimizing the sum of
squared residuals, or errors (Frost, “Ordinary Least Squares”). Graphically, OLS can be thought of as the
line that is closest to all points simultaneously (Addagatla). The linear equation produced by OLS for a
regression with n cases and p predictors (where the subscript i denotes the case) takes the following form:

Yi = β0 + β1X1i + β2X2i + · · · + βpXpi

OLS is a desirable estimation technique because if certain assumptions hold, the OLS estimator is the best
linear unbiased estimator (B.L.U.E). This means that it is the estimator that has the smallest variance
among all linear unbiased estimators for the dependent variable (Moser). Yet in order to be the best linear
unbiased estimator, the following five assumptions of the OLS model must hold (Wilms et al):

1. Linearity: all the parameters in the model are either a constant or a parameter multiplied by an
independent variable (Frost, “7 Classical Assumptions”).
2. No perfect multicollinearity: no explanatory variable is a perfect linear function of other explanatory
variables (Frost, “7 Classical Assumptions”).
3. Exogeneity: the independent variables are independent from the specified model’s error term (Wilms
et al).
4. Homoskedasticity and no autocorrelation: the variance of the errors should be consistent for all
observations (Frost, “7 Classical Assumptions”).
5. The expected value of the errors is zero

This paper will largely focus on the assumption exogeneity and the consequence of omitted variable bias
if this assumption is not met. We will introduce this idea with an example and followed by a short series
of proofs. Next we will discuss the consequences of omitted variable bias and finally conclude with steps to
mitigate the bias.
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Let’s pretend that we are trying to model the risk of heart disease using exercise and age as explanatory
variables. We understand from past studies that exercise has a negative causal relationship with heart
disease - as you exercise more, you can generally expect your risk of heart disease to fall. On the other
hand, age has a positive causal relationship with heart disease. The older you get, the more likely you
are to develop heart disease. Using these two key explanatory variables, we define our true model as
yi = β0 + β1(exercisei) + β2(agei) + ϵi, where yi represents heart disease risk and ei represents the error
term. But when conducting your experiment, you forgot to collect information on participant age and only
tracked their activity levels. Having spent much time on the experiment, you decide to proceed anyway.
Your model is therefore yi = β0 + β1(exercisei) + ei, with ei representing the error term. However, the error
term, ei, contains all variables that are not included in the specified model (Wilms et al). This means the
error term essentially represents β2(agei) + ϵi from the true model. The exogeneity assumption for this OLS
model requires that the explanatory variable (exercise) is independent of the model’s error term. Is this
true?

To address this question, we must ask ourselves if exercise levels and age are independent, meaning they
have a covariance of 0. The answer is clear: it is common knowledge that generally, as people age, they
tend to exercise less. Thus, the exogeneity assumption is violated, and age can be considered a confounding
variable. A confounding variable Z is defined as a variable that is causally associated with the
outcome variable (meaning that the true value of the coefficient for Z is nonzero) and is also
associated with the independent variable (this association does not need to be causal, and
predictors cannot be causes of confounders).

Figure 1: Visual representation of a confounding variable, where an arrow represents a causal relationship
and a line represents a correlational relationship.

So why is it important that the assumption of exogeneity is violated by a confounding variable? Regardless
of whether the assumption is true, when OLS is performed the estimated linear regression model forces the
covariance between the independent variable (exercise) and estimated error term ei to be zero. When in
reality this covariance is not zero (as in this example) the resulting coefficient estimates are biased, meaning
the arithmetic mean of the estimates do not yield the true value, and inconsistent, meaning that even with
an increased sample size the estimates for the beta coefficients do not converge to their true value (Wilms
et al). In other words, the model is wrong. To what extent the beta coefficients are biased is dependent on
the strength of the correlation between the omitted and included variables.

To show this, let’s return to our example using age, exercise, and heart disease risk. We ran a simulation
using three different datasets - one with a strong correlation between age and exercise (r = -0.85), one with
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medium correlation (r = -0.5), and one with a randomized relationship between age and exercise (r=0).
In each case, we defined heart disease risk as risk = 10 + age − 0.6(exercise) plus random noise. When
fitting a linear model using each of the three datasets, we’d expect the coefficient on exercise to be -0.6
and the coefficient on age to be 1. We experimented with what happened to our coefficients when omitting
age as a variable, thus fitting a model for risk as a function of exercise. In the highly correlated dataset,
the β coefficient on exercise was -0.9. In other words, the coefficient on exercise was biased by being more
negative than expected. In the dataset with medium correlation, the coefficient on exercise when omitting
age was -0.8, which is closer to the true value of -0.6 than that of correlated dataset but still more negative
than expected. Finally, in the dataset with no correlation between exercise and age - in other words, zero
covariance - the coefficient on exercise was essentially exactly what was expected: -0.6. In summary, this
simulation shows that as the covariance between the omitted and included variable strengthens, the bias on
the included coefficient increases. Later in this report this concept will be proved mathematically.

Figure 2: Simulation Results

Results

We will now demonstrate omitted variable bias through a series of proofs.

Least Squares estimator with no confounding variable

Assume that the true relationship between Y and X is denoted by the equation yi = β0 + β1xi + ϵi. Using
least squares estimation, we have derived that the estimator for β1 is:

β̂1 =
∑n

i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx̄2

=
∑n

i=1 xiyi − x̄
∑n

i=1 yi∑n
i=1 x2

i − nx̄2

=
∑n

i=1 xiyi −
∑n

i=1 x̄yi∑n
i=1 x2

i − nx̄2 , moving x̄ within the sum

=
∑n

i=1 xiyi −
∑n

i=1 x̄yi∑n
i=1 x2

i − nx̄2

=
∑n

i=1 xiyi − x̄yi∑n
i=1 x2

i − nx̄2 , combining the contents of the sum

=
∑n

i=1(xi − x̄)(yi)∑n
i=1 x2

i − nx̄2
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Assume that the error term ϵi has a mean µ = 0. To prove that β̂1 is unbiased for β1, we must show that
E(β̂1) = β1, since Bias(β1) = E(β̂1) − β1.

E(β̂1) = E

[∑n
i=1(xi − x̄)(yi)∑n

i=1 x2
i − nx̄2

]
= 1∑n

i=1 x2
i − nx̄2 E

[
n∑

i=1
(xi − x̄)(yi)

]
, because we can treat x as fixed and known

=
∑n

i=1 E [(xi − x̄)(yi)]∑n
i=1 x2

i − nx̄2 , by linearity of expectation

=
∑n

i=1 [(xi − x̄)E(yi)]∑n
i=1 x2

i − nx̄2

=
∑n

i=1 [(xi − x̄)E(β0 + β1xi + ϵi)]∑n
i=1 x2

i − nx̄2 , since yi = β0 + β1xi + ϵi

=
∑n

i=1 [(xi − x̄)(β0 + β1xi + E(ϵi))]∑n
i=1 x2

i − nx̄2

=
∑n

i=1 [(xi − x̄)(β0 + β1xi)]∑n
i=1 x2

i − nx̄2 , since E(ϵi) = 0 by assumption

=
∑n

i=1
[
β0xi + β1x2

i − β0x̄ − β1x̄xi

]∑n
i=1 x2

i − nx̄2

=
β0

∑n
i=1 xi + β1

∑n
i=1 x2

i − β0
∑n

i=1 x̄ − β1x̄
∑n

i=1 xi∑n
i=1 x2

i − nx̄2

=
β0

∑n
i=1 xi + β1

∑n
i=1 x2

i − β0
∑n

i=1 x̄ − β1x̄
∑n

i=1 xi∑n
i=1 x2

i − nx̄2

=
β0nx̄ − β0nx̄ + β1

∑n
i=1 x2

i − β1x̄nx̄∑n
i=1 x2

i − nx̄2 , since
n∑

i=1
xi = nx̄

=
β1

∑n
i=1 x2

i − β1nx̄2∑n
i=1 x2

i − nx̄2

=
β1(

∑n
i=1 x2

i − nx̄2)∑n
i=1 x2

i − nx̄2

= β1, as desired

Least squares estimator with a confounding variable

Now, let us assume that there is a second predictor Z of Y such that the true model is y = β0+β1xi+β2zi+ϵi.
Z is also associated with X such that Cov(X, Z) ̸= 0. Therefore, as established above, Z is a confounding
variable. However, without the knowledge of a potential confounding variable, we fit a model with only X,
not accounting for Z.

In this case, our least squares estimator for β1, β̂1, is the same as before. Namely,

β̂1 =
∑n

i=1(xi − x̄)(yi)∑n
i=1 x2

i − nx̄2

Following the same steps as in the case without confounding, an expression for the expected value of β̂1 is:

E(β̂1) =
∑n

i=1 [(xi − x̄)E(yi)]∑n
i=1 x2

i − nx̄2
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Let us now derive expression for E(β̂1) in terms of X and Z:

E(β̂1) =
∑n

i=1 [(xi − x̄)E(yi)]∑n
i=1 x2

i − nx̄2

=
∑n

i=1 [(xi − x̄)E(β0 + β1xi + β2zi + ϵi)]∑n
i=1 x2

i − nx̄2

=
∑n

i=1 [(xi − x̄)(β0 + β1xi + β2zi + E(ϵi))]∑n
i=1 x2

i − nx̄2

=
∑n

i=1 [(xi − x̄)(β0 + β1xi + β2zi)]∑n
i=1 x2

i − nx̄2 , since E(ϵi) = 0 by assumption

=
∑n

i=1
[
β0xi + β1x2

i + β2xizi − β0x̄ − β1x̄xi − β2x̄zi

]∑n
i=1 x2

i − nx̄2

=
β0

∑n
i=1 xi + β1

∑n
i=1 x2

i + β2
∑n

i=1 xizi − β0
∑n

i=1 x̄ − β1x̄
∑n

i=1 xi − β2x̄
∑n

i=1 zi∑n
i=1 x2

i − nx̄2

=
β0

∑n
i=1 xi + β1

∑n
i=1 x2

i − β0
∑n

i=1 x̄ − β1x̄
∑n

i=1 xi∑n
i=1 x2

i − nx̄2 +
β2

∑n
i=1 xizi − β2x̄

∑n
i=1 zi∑n

i=1 x2
i − nx̄2

=
β0(

∑n
i=1 xi −

∑n
i=1 x̄) + β1(

∑n
i=1 x2

i − x̄
∑n

i=1 xi)∑n
i=1 x2

i − nx̄2 +
β2(

∑n
i=1 xizi − x̄

∑n
i=1 zi)∑n

i=1 x2
i − nx̄2

=
β0(nx̄ − nx̄) + β1(

∑n
i=1 x2

i − nx̄2)∑n
i=1 x2

i − nx̄2 +
β2(

∑n
i=1 xizi − x̄

∑n
i=1 zi)∑n

i=1 x2
i − nx̄2 , since

n∑
i=1

xi = nx̄

=
β1(

∑n
i=1 x2

i − nx̄2)∑n
i=1 x2

i − nx̄2 +
β2(

∑n
i=1 xizi − nx̄z̄)∑n
i=1 x2

i − nx̄2 , since
n∑

i=1
zi = nz̄

= β1 + β2

∑n
i=1 xizi − nx̄z̄∑n
i=1 x2

i − nx̄2

However, we also can show that:

∑n
i=1 (zi − z̄)(xi − x̄)∑n

i=1 x2
i − nx̄2 =

∑n
i=1 (zixi − zix̄ − z̄xi + z̄x̄)∑n

i=1 x2
i − nx̄2

=
∑n

i=1 zixi − x̄
∑n

i=1 zi − z̄
∑n

i=1 xi +
∑n

i=1 z̄x̄∑n
i=1 x2

i − nx̄2

=
∑n

i=1 zixi − nx̄z̄ − nz̄x̄ + nz̄x̄∑n
i=1 x2

i − nx̄2 , since
n∑

i=1
xi = nx̄ and

n∑
i=1

zi = nz̄

=
∑n

i=1 zixi − nx̄z̄∑n
i=1 x2

i − nx̄2

Thus, we can rewrite the expected value of β̂1 as:

E(β̂1) = β1 + β2

∑n
i=1 (zi − z̄)(xi − x̄)∑n

i=1 x2
i − nx̄2

It is important to note that the bias of β̂1 (the difference between its expected value and the true value of
the parameter) is β2

∑n

i=1
(zi−z̄)(xi−x̄)∑n

i=1
x2

i
−nx2 . This can be rewritten as β2

∑n

i=1
(zi−z̄)(xi−x̄)∑n

i=1
(xi−x̄)2 , which is equivalent to

β2
̂cov(x,z)

v̂ar(x)
, where ̂cov(x, z) and v̂ar(x) represent the sample covariance of X and Z and the sample variance

of X, respectively. This indicates that as the sample covariance of X and Z increases and the coefficient
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of the true effect of Z on Y increases, the bias of β̂1 will increase too. Therefore, the strength of omitted
variable bias is contingent upon how much X (the independent variable) and Z (the omitted variable) vary
together within the sample and upon the strength of the true relationship between Z and Y (the outcome
variable). Note that if Z and X have no association in the data (the sample covariance is zero), then the
estimator will be unbiased. Similarly, if β2 = 0 and there is no true causal relationship between Z and Y ,
the estimator will also be unbiased. This indicates that an omitted variable must be a confounding variable
in order to cause omitted variable bias.

Least Squares estimator in Matrix Form

Let us now estimate the following model:

E[y|x1, x2, ..., xp] = β0 + β1x1 + β2x2 + . . . βpxp.

Consider the vector of outcomes y

y =


y1
y2
...

yn

 ,

the vector of covariates β

β =


β0
β1
...

βp

 ,

and the matrix of covariates (sometimes referred to as the “design matrix”) X

X =


1 x11 · · · xp1
1 x12 · · · xp2
...

...
. . .

...
1 x1n · · · xpn

 .

Then, we can write our linear regression model as

y = Xβ + ϵ,

where E[ϵ] = 0.

Using matrix notation, we can formulate the least squares problem as follows:

argminβ(y − Xβ)⊤(y − Xβ).

Let us find the value of β that minimizes the sum of squared residuals (y − Xβ)⊤(y − Xβ).

First, take the derivative with respect to β:

∂

∂β
(y − Xβ)⊤(y − Xβ) = ∂

∂β

(
y⊤y − 2y⊤Xβ + β⊤X⊤Xβ

)
= −2X⊤y + 2X⊤Xβ
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Then, set this equal to zero and solve for β:

−2X⊤y + 2X⊤Xβ
set= 0

2X⊤Xβ = 2X⊤y
X⊤Xβ = X⊤y

(X⊤X)−1X⊤Xβ = (X⊤X)−1X⊤y
β̂ = (X⊤X)−1X⊤y

Bias Property of the Ordinary Least Squares Estimator without Confounder:
Matrix Form

In this case, we assume we have fit the correct model and accounted for all potential confounders in the
matrix X .To prove that β̂ is unbiased for β, we must show that E(β̂) = β

E(β̂) = E[(X⊤X)−1X⊤y]
= (X⊤X)−1X⊤E[y], since X is known
= (X⊤X)−1X⊤E[Xβ + ϵ], since y = Xβ + ϵ by assumption
= (X⊤X)−1X⊤(Xβ + E[ϵ]), since X is known
= (X⊤X)−1X⊤Xβ, since E[ϵ] = 0 by assumption
= β, as desired

Bias Property of the Ordinary Least Squares Estimator with Confounder: Matrix
Form

Let us now assume that the true model is

y = Xβ + Zδ + ϵ

with one confounding variable Z such that:

Z =


z1
z2
...

zn

 ,

However, without knowledge of the confounding variable, we fit the model as we did in the case with no
confounding. Thus, the least squares estimator is still:

β̂ = (X⊤X)−1X⊤y

In this case, let us find E(β̂).
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E(β̂) = E[(X⊤X)−1X⊤y]
= (X⊤X)−1X⊤E[y], since X is known
= (X⊤X)−1X⊤E[Xβ + Zδ + ϵ], since y = Xβ + Zδ + ϵ by assumption
= (X⊤X)−1X⊤(Xβ + Zδ + E[ϵ]), since X and Z are known
= (X⊤X)−1X⊤(Xβ + Zδ), since E[ϵ] = 0 by assumption
= (X⊤X)−1X⊤Xβ + (X⊤X)−1X⊤Zδ

= β + (X⊤X)−1X⊤Zδ

Thus, this derivation suggests that E(β̂) is biased if (X⊤X)−1X⊤Zδ ̸= 0. Similar to the derivation with
one independent variable, we can divide this bias term into two parts. δ represents the relationship between
Z and Y, accounting for X. Thus, if there is no association between Z and Y (δ = 0), β̂ is unbiased for β.
Therefore, the stronger the association between the outcome and the confounder, the larger the bias on our
estimate β̂ if the confounder is omitted.

The second part of this bias term, (X⊤X)−1X⊤Z, can be interpreted as the relationship between the
confounder Z and the vector of covariates X. Similar to the case where there is only one independent
variable we accounted for, this result also shows that the stronger the relationship between the confounder
and other independent variables present in the model, the larger the bias on β̂ if the confounder is omitted.

In sum, the matrix form of the omitted variable bias derivations serves as an extension of our derivation with
only one covariate. With matrices, we are able to account for multiple covariates and we find very similar
consequences of not including a confounding variable in the regression.

Discussion

Omitted variable bias carries significant consequences for studies that use linear regression. Under the
assumption of exogeneity, ordinary least-squares estimators are unbiased and consistent, and conclusions are
drawn from linear regressions based on that assumption. However, issues arise when exogeneity is broken by
the omission of a confounder. Depending on the strength and signs of the correlation between the explanatory
variable, outcome variable, and omitted variable, a regression that is subject to omitted variable bias can
mask, heighten, or change the sign of the true relationship between two variables (Wilms et al). Using biased
estimates is dangerous because it can lead to assumptions of causation that could be untrue. For example,
let’s consider a case where the omission of a confounding variable could drastically inflate the coefficient for
an included predictor far beyond the true value of its relationship with the outcome variable. Seeing such
a strong relationship (when in fact the relationship is weak) could lead to conclusions about the data that
are plainly incorrect and could cause harm. Conversely, seeing a small coefficient when the true parameter
is much larger could lead studies to miss important relationships among variables that prevent necessary
actions from being taken. Omitted variable bias also affects the validity of hypothesis testing and p-values,
which rely on the estimate of the beta-coefficient being unbiased (Wilms et al). Conducting hypothesis
tests with a biased estimate can invalidate results and lead researchers to mistakenly label a relationship as
statistically significant or insignificant.

While we have gone through examples of running models with and without a particular variable, often in
real life situations that choice is not an option. The missing confounding variable sometimes is simply not
attainable. In such cases, what are steps that we can take to reduce omitted variable bias?

Whenever possible, one of the best ways to minimize omitted variable bias is through experimental design
(Wilms et al). If participants are assigned randomly into experimental and control groups with sufficiently
large sample sizes, aside from the treatment variable the variables are distributed equally to both groups
and any omitted variable is missing from both groups. Therefore, the groups only differ with respect to
treatment and observed differences can be attributed to this treatment (Wilms et al). However, in reality a
large majority of research questions cannot be executed as an experiment. Thus, another solution is needed.

8



One solution is a proxy variable. A proxy variable is defined as an observed variable that is related to but not
identical to an unobserved explanatory variable in multiple regression analysis (Van Kammen). For example,
a proxy variable for quality of life might be per-capita GDP, and one for true body fat percentage could be
BMI (Frost, “Proxy Variables: The Good Twin of Confounding Variables”). To understand a little more
about the math behind a proxy variable, let’s think of an example of predicting wages using education (x1),
labor experience (x2), and ability (x∗

3). Ability is essentially unmeasurable and thus we will use IQ (x3) as
a proxy variable for it. If x3 is a proxy for ability (x∗

3), the relationship between them might look like x∗
3 =

δ0+δ3x3+v3, where error term v3 represents the non-identical relationship between the proxy and unobserved
variable (Van Kammen). δ3 represents the relationship between IQ and ability, and thus if δ3 is 0 we
understand that IQ is a poor proxy for ability. We can substitute our equation for x∗

3 into our linear regression
equation for wages, which is y = β0+β1x1+β2x2+β3x3+ϵ, and get y = β0+β1x1+β2x2+β3(δ0+δ3x3+v3)+ϵ.
Rearranging, we end up with y = (β0 +β3δ0)+β1x1 +β2x2 +β3δ3x3 +(β3v3 + ϵ). In order to have consistent
estimates of β1 and β2, the expected value of the new error term (β3v3 + ϵ) must be 0, which is satisfied
if E(v3|x1, x2, x3) = E(ϵ|x1, x2, x3) = 0. In other words, the relationship between ability and IQ does not
depend on education and labor experience, allowing us to estimate β1 and β2 without bias. The coefficient
on our proxy variable (IQ) itself will actually not be unbiased or consistent, but generally the goal is for
consistent and unbiased estimates of β1 and β2 and overall bias reduction (Van Kammen). Thus, using a
proxy variable is a common and relatively trusted solution to omitted variable bias.
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